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Abstract. We point out a possible mechanism by which smooth surfaces can become spiky as the constant of
curvature stiffness κ falls below a certain critical value. This happens either in a single first-order transition,
or in a sequence of two Kosterlitz-Thouless-like transitions. There may also be additional phases in which
the spikes form a hexagonal solid-like array or a disordered liquid-like structure. Our discussion suggests
that there exist smooth strings between quarks.

PACS. 68.35.Rh Phase transitions and critical phenomena – 68.35.Wm Other nonelectronic properties

1 Introduction

We would like to point out a possible rather universal
mechanism by which spiky superstructures can form on
a membrane. These can undergo several interesting phase
transitions, whose nature we predict.

The existence of superstructures on membranes has
been investigated by many authors, in particular worm-
hole [1] and egg-carton shapes [2,3]. There are also ex-
perimental indications [4] that such structures exist. An
example is shown in Figure 1, although it is by no means
clear that this particular state can be explained by the
phase transitions to be described in this note.

Consider closed amphiphilic vesicles dispersed in wa-
ter, forming in general smooth tensionless surfaces [5]
whose effective energy is governed by curvature stiff-
ness [6]:

E =
1

2

∫
d2x
√
g
[
κ0(c1 + c2)2 + κ̄0c1c2

]
, (1)

where κ0 is of the order of eV. Here (c1 + c2)/2 and c1c2
denote the mean and the Gaussian curvature, respectively,
x = (x1, x2) are arbitrary parameters of the surface, and
gij(x) is the intrinsic metric. This energy is certainly only
an approximation, valid for small curvatures. If the cur-
vatures increase, there will be deviations from this simple
quadratic behavior. Moreover, since membranes are com-
posed of rod-like molecules of a certain length r0, there
exists a natural maximal curvature c1 = c2 = 1/r0 be-
yond which a membrane cannot be bent without destroy-
ing the microscopic structure. Between zero and this max-
imal value, the increase in energy will slow down. This
property is caused by various important contributions to
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Fig. 1. Rough surface structure observed by Kloesgen and
Helfrich [4] in dioleoylphosphatidylcholine (DOPC) bilayers.

the bending stiffness [3,7]. As a function of the mean cur-
vature, the bending energy of many membranes may have
a maximum at a certain value cm of (c1+c2)/2, as sketched
in Figure 2. Such a maximum supplies the system with a
second characteristic length scale rm = 1/cm at which in-
teresting new phenomena should be observed. A further
length scale arises from higher powers of the Gaussian cur-
vature in the energy density. Assuming, for example, the
presence of terms κ2(c1c2)2 + κ4(c1c2)4, with coefficients
κ2 ≈ −1 eV Å2, κ4 ≈ 1 eV (30 Å)8, Monte-Carlo simula-
tions [8] have shown the existence of a periodic egg carton
superstructure with a period of the order of rm = 60 Å.

Membranes with an additional length scale of either
type will be the objects of study in this note. Certainly,
the energy of a single spike will be quite large (maybe
of the order of 10kBT ) so that their Boltzmann factor
is quite small. We shall see, however, that configuration
entropy can compensate this large energy at high enough
temperatures.
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Fig. 2. Possible behaviors of bending energy as a function of
mean curvature (c1 + c2)/2 measured in units of the inverse
molecular size r0.

2 Reminder of fluctuation properties
of membranes

Before we come to our actual theory, let us first recall some
well-known properties of membrane fluctuations governed
only by the energy (1), with a partition function (in nat-
ural units where the Boltzmann constant is equal to 1)

Z =
∑
conf

e−E/T , (2)

where
∑

conf denotes a sum over all membrane configura-
tions. As a consequence of the anharmonic nature of the
energy (1) when expressed in terms of the positions of the
membrane molecules, thermal fluctuations make the first
coupling constant, the extrinsic curvature stiffness , soften
with temperature as [9,10]

κ = κ0 − 3(T/8π) log
(
r2
IR/r

2
UV

)
. (3)

Here rUV is a short-distance (UV) cutoff equal to the size
of the molecules r0, whereas rIR is a long-distance (IR)
cutoff set by the size of a vesicle. The small parameter
in the perturbation expansion leading to (3) is the inverse
stiffness 1/κ, the flexibility. The result (3) is obtained from
an infinite bubble sum of diagrams, which is equivalent to
a Hartree-Fock-Bogoliubov approximation [10]. That ap-
proximation gives usually a good idea for what happens
also for large flexibilities, i.e. small κ. If we trust equa-
tion (3) in this regime, we conclude that the extrinsic cur-
vature vanishes for large vesicles, whose size exceed the
so-called persistence length [11]

ξ = rUV e4πκ0/3T . (4)

On the basis of this, we may expect vesicles of a size much
larger than ξ to look crumpled. This has indeed been con-
firmed in computer simulations [12].

For the second coupling constant κ̄0 in (1), the Gaus-
sian curvature stiffness, this effect is absent since this con-
stant hardens as follows [13]

κ̄ = κ̄0 + (10/3)(T/8π) log
(
r2
IR/r

2
UV

)
. (5)

An important question is whether the persistence length
(4) reflects a true property of the theory, or is merely a
consequence of the Hartree-Fock-Bogoliubov approxima-
tion which will not survive higher-loop corrections.

In an attempt to answer this question, consider a single
surface fluctuating around an infinitely large planar con-
figuration in d dimensions with periodic boundary con-
ditions. This surface may be described by a vector field
Xµ(x) (d = 1, . . . , d), giving rise to the intrinsic metric
gij(x) = ∂iX

µ(x)∂jXµ(x) where (i, j = 1, 2). The con-
traction of the spatial vector indices µ is performed via
the Euclidean unit matrix Gµν = δµν . In terms of Xµ(x),
the energy (1) can be written more explicitly as

E =
1

2

∫
d2x
√
g(x)[κ0D

2Xµ(x)D2Xµ(x)

+ κ̄0(D2XµD2Xµ −DνDλX
µDνDλXµ)], (6)

where Dµ is the covariant derivative formed with the help
of the Christoffel symbol Γij

k = gkl(∂igjl+∂jgil−∂lgij)/2.
The Gaussian curvature energy can be ignored, since it is a
constant depending only on the genus of the surface which
assume to remain invariant.

We shall choose a special parametrization due to
Monge, in which X1(x) = x1, X2(x) = x2, and
Xa+2(x) = ua(x) with (a = 1, . . . , d− 2), so that gij(x) =
δij + ∂iua(x)∂ju

a(x), with the contraction over indices a
being performed via the (d−2)× (d−2)-dimensional sub-
matrix δab of Gµν . Then we rewrite the energy (6) in yet
another form as [14]

E′ =
κ0

2

∫
d2x
√
h[D2XaD2Xa

+ λij(∂iX
a∂jXa + δij − hij)], (7)

where hij(x) and λij(x) are two auxiliary symmetric fields.
The partition function of the surface is then given by the
functional integral

Z =

∫
DuDλijDhije

−E′/T . (8)

The integral over λij(x) ensures that the auxiliary field
hij(x) coincides with the induced metric gij(x), and
thus the equality of Z with the partition function Z =∫
DXe−E/T for the original energy (6) [or (1)], if the

parametrization is fixed likewise. In the sequel we shall
measure the stiffness constants in units of temperature so
that we can set T = 1 everywhere.

The advantage of the functional integral (7) is that
the surface positions ua(x) can be integrated out, leaving
a purely intrinsic effective energy

Eeff =
d− 2

2

{
Tr log[(D2)2 −Diλ

ijDj ]

−
κ0

d− 2

∫
d2x
√
gλijhij

}
. (9)
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In the limit d → ∞, the fluctuations of the fields
λij(x), hij(x) are frozen, and the energy is given by the
saddle point approximation. For symmetry reasons, the
saddle point has constant diagonal fields hij = ρ δij ,
λij = λhij = (λ/ρ)δij , so that the energy reads

E =
d− 2

2
∆x1∆x2 ρ

{[∫
d2k

(2π)2
log(k4 + λk2)

−2
κ0

d− 2
λ

]
+ 2

κ0

d− 2

λ

ρ

}
, (10)

to be extremized in ρ and λ. Here ∆x1∆x2 is the base area
of the surface. Performing the integral with a momentum
space cutoff Λ of the order of the inverse molecular size
rUV we find∫
|k|<Λ

d2k

(2π)2
log(k2 + λ) =

1

4π
[(Λ2 + λ) log(Λ2 + λ)

− Λ2 − λ logλ]

=
1

4π
[Λ2(logΛ2 − 1) + (logΛ2 + 1)λ− λ log λ]

+O(1/Λ2),
(11)

and the brackets in (10) become

1

4π
[2Λ2(logΛ2 − 1) + (logΛ2 + 1)λ− λ logλ]− 2

κ0

d− 2
λ.

(12)

The first constant term can be absorbed into the measure
of the functional integral (8). The logarithmic divergence
multiplying λ may be removed by introducing a renormal-
ized stiffness

κ = κ0 −
d− 2

8π

(
log

Λ2

µ2
+ 1

)
(13)

where µ is some mass scale, on which κ depends [κ =
κ(µ)]. For µ equal to the inverse of the molecular size rUV,
we have κ(r−1

UV) = κ0. With the help of κ, the bracket in
(10) becomes

−
1

4π
λ log

Λ2

µ2
− 2

κ

d− 2
λ. (14)

Introducing further a µ-independent mass scale (the so-
called dimensionally transmuted coupling constant)

λ̄ = µ2e−[2/(d−2)]4πκ(µ)+1, (15)

expression (12) takes a µ- and cutoff-independent form

−
1

4π
λ log

λ

λ̄
, (16)

and the energy (10) can be rewritten as

E =
d− 2

2
∆x1∆x2 ρ

(
f0 −

λ

4π
+ κ

λ

ρ

)
,

f0 ≡ −
λ

4π

(
log

λ

λ̄
− 1

)
. (17)

A multiplicative renormalization constant Zκ = κ0/κ has
been absorbed into λ and λ̄, so that all quantities are now
finite for Λ→∞.

Extremizing (17) in ρ yields f0 = λ/4π and thus λ = λ̄,
where f0 − λ/4π = 0. Extremizing (17) in λ yields κ/ρ =
1/4π, so that the extremal energy (17) is

Eext =
d− 2

2
∆x1∆x2 λ̄

4π
· (18)

From the trace of the logarithm in (9) we see that λ̄ sets a
mass scale for the correlation function 〈Diu

aDju
b〉 which

falls off like e−|x|
√
λ̄ for large |x|, showing that 1/

√
λ̄ plays

the role of the persistence length (4). Thus the d → ∞
model possesses precisely the properties which we derived
for a real membrane in three dimensions by a Hartree-
Fock-Bogoliubov approximation.

The question of corrections to this approximation is
therefore equivalent to the problem of lowering d down to
the physical dimension 3. Since we are unable to treat the
model for finite d, let us gain insight into its possible prop-
erties by comparing it to an analogous very similar model,
which is also exactly solvable for a parameter N → ∞,
which plays the same role as d−2 in the above discussion.
This is the O(N) nonlinear σ-model for which the case
N = 2 is well-known to have quite different properties
from those derived from the N → ∞ -limit. This knowl-
edge will shed some light upon the behavior of surfaces
for small d− 2.

3 Relevant properties of O(N)-symmetric
nonlinear σ-models

The O(N)-symmetric nonlinear σ-model consists of a fluc-
tuating field of unit vectors with N components

na(x) (a = 1, . . . , N), n2
a(x) = 1, (19)

in a two-dimensional x-space, with a partition function
given by the functional integral

Zσ =
∏
x

[∫
dN−1na

SN

]
exp

[
−
κ0

2

∫
d2x(∂na)2

]
, (20)

where SN ≡ 2πN/2/Γ (N/2) is the surface of a sphere in
N dimensions covered by the directional integral dN−1na,
so that

∫
dN−1na/SN = 1. Just as the surface model for

d→∞, this model is exactly solvable in the limit N →∞,
where it is referred to as the spherical model, first solved
by Berlin and Kac in 1952 [15]. As in the energy (7), we
introduce an auxiliary field λ(x) and rewrite (20) as

Zσ =

∫
DNna

∫ i∞

−i∞
Dλ exp

{
−
κ0

2

∫
d2x

[
(∂na)

2

+N λ(n2
a − 1)

]}
, (21)
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where the λ-integrations run from −i∞ to i∞. Now the
na-integrals are Gaussian and can be done, leading to

Zσ =

∫ i∞

−i∞
Dλ exp

{
−
N

2

[
Tr log(−∂2+λ)+κ0

∫
d2xλ(x)

]}
.

(22)

In the limit N →∞, the λ-fluctuations are frozen at the
saddle point, which lies at a constant λ(x) ≡ λ, and has
an energy

Eσ =
N

2
∆x1∆x2

[∫
d2k

(2π)2
log(k2 + λ)−

κ0

N
λ

]
. (23)

Regularizing the integral as before, this becomes

E =
N

2
∆x1∆x2 ρf0, f0 ≡ −

λ

4π

(
log

λ

λ̄
− 1

)
, (24)

where λ̄ = µ2 exp{−4πκ(µ)/N} is the dimensionally
transmuted coupling constant of the σ-model. It gives a

nonzero length scale 1/
√
λ̄ to the fluctuations of the vector

field na which have a correlation function ∝ e−|x|
√
λ̄.

The similarity of the two models is quite obvious. The
advantage of the latter is that it is well understood. Since
the work of Kosterlitz and Thouless in 1973 [16] it is
known that N → ∞ properties are found in the model
only down to N = 3 (classical Heisenberg model). For
N = 2, the model possesses at large κ0 ≥ κc

0 = 2/π an
extra phase in which the correlation functions of the vec-
tor field na have a long range, falling off algebraically like
1/|x|const rather than exponentially. This is most easily
seen by parametrizing the two-component vector field Na
in terms of an azimuthal angle θ as (Na) = (cos θ, sin θ),
and rewriting (20) as a functional integral

Z̃σ =
∑
L

∏
x

[∫
dθ(x)

2π

]
× exp

{
−
κ0

2

∫
d2x[∂iθ(x)− 2πδi(x;L)]2

}
, (25)

where δi(x;L) ≡ εij
∫

dξjδ
(2)(x − x̄(ξ)) is the δ-function

on a line L described by x̄(ξ), pointing orthogonal to the
line elements. The sum

∑
L runs over a grand-canonical

ensemble of lines L. The sum is necessary to preserve
the cyclic invariance of the energy in (20) under cyclic
replacements θ(x) → θ(x) + 2πδ(x;S), where δ(x;S) ≡∫

d2ξδ(2)(x− x̄(ξ)) is the δ-function on the surface S de-
scribed by x̄(ξ) [17]. The energy in (25) is a direct conse-
quence of the identity ∂ie

iθ(x) = eiθ(x)[∂iθ(x)−2πδi(x;L)].
We may now introduce an auxiliary field bi(x) and

rewrite Z̃σ as

Z̃σ =
∑
L

∏
x

[∫
dθ(x)

2π

∫
dbi

]
×exp

{
κ0

∫
d2x

(
b2i (x)

2
− i bi(x)[∂iθ(x) − 2πδi(x;L)]

)}
.

(26)

The integrals over θ(x) can now be performed, which gives
the condition that the field bi must be divergenceless [17].
This may be enforced by setting bi = εij∂ju, and the par-
tition function (26) becomes

Z̃σ =
∑
{xi,xf}

∏
x

[∫
du(x)

]

× exp

{
κ0

∫
d2x

[
1

2
[∂iu(x)]2 − 2πiu(x)n(x)

]}
, (27)

where

n(x) = εij∂iδj(x;L) = δ(2)(x− xi)− δ
(2)(x− xf) (28)

is the density of initial and final end points of the line
L, which lie at xi and xf , respectively, with positive and
negative signs. These are the positions of vortices and an-
tivortices in the original field configurations θ(x). By in-
tegrating out the u-field in (27), we obtain

Z̃σ =
∑
{xi,xf}

exp
[
−
κ0

2
4π2

×

∫
d2x

∫
d2x′n(x)G(x− x′)n(x′)

]
, (29)

where

G(x− x′) =

∫
d2k

(2π)2

eikx

k2
= −

1

2π
log
|x− x′|

r0
+ log

rIR

r2
0

(30)

is the correlation function of the field u(x) containing some
finite length scale r0 and an infrared cutoff rIR which goes
to infinity. However, this infinity drops out in the parti-
tion function (29) since

∫
d2xn(x) = 0 due to the equal

number of initial and final endpoints xi, xf in the sum
over all initial and final points Σxi,xf

of the lines L in the
grand-canonical ensemble.

Let us derive the partition function (29) in a slightly
different, more phenomenological way which will be useful
to understand the spiky membranes. Suppose we are given
the partition function (27) without vortices, where the
energy is simply

Ẽlin
σ =

κ0

2

∫
d2x(∂iu)2. (31)

The equation of motion

∂2u(x) = 0 (32)

has two types of rotationally invariant solutions. The triv-
ial u(x) ≡ 0, and the solution

uwh(x) = ∓A
1

2π
log

r

r0
, r > r0, r ≡ |x|, (33)

which satisfies −∂2uwh = 0. The amplitude A is arbitrary.
If we interpret u(x) as a vertical displacement of a flat
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Fig. 3. Wormhole solution of differential equation ∂2u(x) = 0.

Fig. 4. Spike-like solution of differential equation ∂2u(x) = 0,
obtained from the lower branch of the “wormhole” solution in
Figure 3 after capping it at the molecular scale rUV.

surface in three dimensions, this looks like a “wormhole”
in a curved planar space, as pictured in Figure 3.

This solution exists for any r0. Let us now imagine
the surface to consist of molecules of size rUV. Then the
smallest possible r0 is rUV. For this value, however, the
throat of the wormhole can be closed by a small cap from
above or below, thus becoming a spike-like surface shown
in Figure 4 to be denoted by usp(x), or an antispike-like
surface pointing downwards.

The linearized energy (32) of these surfaces is large
so that only a few spikes and antispikes are present in
thermal equilibrium. If a single spike-antispike pair with
opposite orientation centered at different places x and y is
inserted into the field energy (31), we obtain precisely the
interaction energy of a vortex pair in the partition func-
tion (29) if we set A = 1. The size of A is a consequence
of the vortex quantization in the original energy in (25).
A spike and an antispike can combine to a dipole, and
two of these to a quadrupole, as shown in Figure 5. In
principle, there can also be a crystal-like array of spikes
and antispikes, also shown in Figure 5. This requires the
presence off additional higher-gradient terms in the energy
(32) which would modify the short-distance properties ap-
propriately [17].

The partition function (29) describes a neutral
Coulomb gas. This is known to have a pair unbinding tran-
sition which is of infinite order at low temperatures, the
Kosterlitz-Thouless transition. The transition point is eas-
ily calculated if only very few charges are present. At low

temperatures, a single pair has an average square distance

〈r2〉 ∝

∫ ∞
r0

dr r e−κ0 2π log(r/r0)r2 ∝
1

4− κ0 2π
· (34)

As the stiffness constant κ0 falls below κc
0 = 2/π, the

square distance diverges, and the electron gas enters a
plasma phase in which the field u(x) acquires a finite
range, the Debye screening length rDebye, which is pre-

cisely the inverse of
√
λ̄ in equation (24).

This result implies that the average value of λ(x) which
is calculated from the functional integral (22) as

〈λ(x)〉 = Z−1

∫ i∞

−i∞
Dλλ(x)

× exp

{
−
N

2

[
Tr log(−∂2+λ)+κ0

∫
d2xλ(x)

]}
,

(35)

and which has the nonzero average value 〈λ(x)〉 = λ̄ for
small stiffness, vanishes for N = 2 and κ0 > κc

0. There the
fluctuations of λ(x) become so strong that the nonzero
saddle point at λ ≡ λ̄ looses control over the functional
integral. The λ(x)-field acquire more and more zeros until,
at a small enoughN and large enough stiffness, these zeros
proliferate making 〈λ(x)〉 = 0. Up to now, nobody has
been able to derive this result from the functional integral
(35), but the above Coulomb gas argument proves that
this must be true.

For a dilute gas of vortices, i.e., for a high activation
energy Ev and a small fugacity z = e−Ev/T of a vortex,
the sum over all vortices and antivortices in the partition
function (27) can be restricted to a single vortex or an-
tivortex at each point, in which case the partition function
goes over into

Z̃σ ≈
∏
x

[∫
du(x)

]
× exp

{
−κ0

∫
d2x

[
1

2
[∂iu(x)]2 −

z

κ0
cos[2πκ0u(x)]

]}
.

(36)

This is the partition function of the sine-Gordon model,
which is thus equivalent to the O(2) nonlinear σ-model.
For small stiffness κ0, we may expand cos[2πκ0u(x)] ≈
1 − 4π2κ2

0u
2(x)/2 to see that the fluctuations have a a

finite range. For large stiffness κ0 > κc0 = 2/π, however,
the cosine oscillates so rapidly that it no longer contributes
to the functional integral. In this regime, the system has
only long-range fluctuations [18].

4 Consequences for membranes

What are the lessons of all this for membrane fluctua-
tions? Suppose we restrict the field fluctuations in (7) to
diagonal fields hij(x) = ρ(x)δij and λij = λ(x)hij(x) with
the constant extremal ρ = 4πκ. Then we remain with
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Fig. 5. Pair of spikes, quadrupole-, and crystal-like multipole solutions, obtained from a superposition of spike and antispike
solutions of the differential equation ∂2u(x) = 0 in Figure 4.

a functional integral over λ(x) with a Boltzmann factor

e−E
′eff/T where E′eff is the obvious generalization of the

effective energy (9) to a functional of a space-dependent
λ(x), which has precisely the same form as functional the
exponent in (22). But such a functional integral has just
been shown to yield for a large enough stiffness κ a van-
ishing average 〈λ(x)〉, implying that the fluctuations of
the derivatives ∂iu

a have an infinite range characteristic
for a smooth surface. It is certainly suggestive that the
additional neglected fluctuations in the energy (9), non-
diagonal in λij(x) and arbitrary local in hij(x) do not
change this result.

How can we see whether this is true? Consider a lin-
earized version of the energy (6)

Ẽlin =
κ0

2

∫
d2x[∂2u(x)]2, (37)

and let us go through the same argument as in the discus-
sion of the linearized energy (31). The equation of motion

∂4u(x) = 0 (38)

has three types of solutions. First, there is the trivial one
u(x) ≡ 0. Second, there are spike-like solutions usp(x) aris-
ing from capping a wormhole solution (33) of the previous
system, as shown in Figure 3. Third, and most impor-
tantly, there are spike-like solutions of the form

usp2(x) = ±A

√
3

2

1

8π

[
r2 log

r

r0e
−

1

2
log

r

r0e1/6

]
, r ≡ |x|,

(39)

which satisfy −∂2usp2(x) = usp(x) and ∂4usp2(x) =

±Aδ(2)(x). With a cap of molecular size they have the
form shown in Figure 6. There are also dipole, quadrupole,
and multipole solutions displayed in Figure 7.

Fig. 6. Spike-like solution of equation ∂4u(x) = 0, with singu-
larity capped at the molecular scale rUV.

The distances of the spikes in these arrays are of the
order of the length scale rm = 1/cm supplied by the ex-
trema in Figure 2.

The important point is now that there must be a pre-
ferred amplitude A of the spike-like solution (39), fixed by
the interplay between rm and the molecular size rUV (as
in the Monte-Carlo calculation in Ref. [8]). If this is the
case, we can insert a superposition of these solutions into
the energy (37) and find a partition function

Z̃mem =
∑
{xi,xf}

exp
[
−
κ0

2
A2

×

∫
d2x

∫
d2x′ n(x)G4(x− x′)n(x′)

]
, (40)
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Fig. 7. Pair of spikes, quadrupole, and multipole solutions of differential equation ∂4u(x) = 0, with singularities capped at the
molecular scale rUV.

where n(x) is a sum of δ-functions at the positions of the
spikes (with a minus sign for antispikes), and

G4(x− x′) =

∫
d2k

(2π)2

eik(x−x′)

k4

= usp2(x− x′) + c1(x− x′)2 + c2 (41)

is the correlation function of the field u(x) containing two
infinite constants from the infrared divergence of the inte-
gral. The infinity c2 drops out for neutral spike-antispike
systems with

∫
d2xn(x) = 0. The infinity c1 drops out

under the condition of dipole neutrality
∫

d2xxn(x) = 0.
This follows directly by rewriting the interaction energy
associated with c1 as∫

d2x

∫
d2x′ n(x) (x− x′)2n(x′)

=2

∫
d2xx2 n(x)

∫
d2x′ n(x′)−2

∫
d2xxn(x)

∫
d2x′ x′ n(x′)

= −2

∫
d2xxn(x)

∫
d2x′ x′ n(x′) = 0.

(42)

Note that the purely logarithmic spike-like solutions of the
wormhole type usp(x) = uwh(x) inFigure 4 do not have a
long-range attraction between them.

The partition function (40) is obviously equivalent to
the local one

Z̃mem =
∑
{xi,xf}

∏
x

[∫
du(x)

]
exp {κ0

×

∫
d2x

[
1

2
[∂2u(x)]2 −Aiu(x)n(x)

]}
, (43)

or, in analogy with (36), to

Z̃mem ≈
∏
x

[∫
du(x)

]
exp {−κ0

×

∫
d2x

[
1

2
[∂2u(x)]2 −

z

κ0
cos[Aκ0u(x)]

]}
.

(44)

This system is the dual transform of a two-dimensional
crystal with defects whose phase properties have been
thoroughly studied [20]. As it stands, the partition func-
tion (44) has a single first-order transition [21] from a
spiky to a smooth surface. If the short-range properties of
the model are slightly modified at a length scale l, the first-
order transition splits into a sequence of two Kosterlitz-
Thouless-like transitions, in which the spikes first form a
gas of dipole pairs, and then a gas of quadrupoles [22] (see
the figure in p. 1303 of Ref. [20]).

Upon further modifying the short-range properties,
the quadrupoles may combine to a liquid of spikes and
antispikes, which may be the structures seen in the ex-
periments in Figure 1. The liquid could also freeze to a
solid. Future experiments should look for quadrupoles and
dipoles to confirm the correctness of these ideas.

It is essential that nonlinearities in the curvature en-
ergy fix an optimal size of the amplitude A in (40). For
a purely quadratic surface energy (1), such an optimal A
cannot exist since the energy of a spike-like solution (39)
can be reduced continuously to zero by letting A go to
zero.
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5 Possible consequences for string theory

Such nonlinearities may also resolve an an old riddle in
the string theory of permanent quark confinement. Quarks
and antiquarks are held together at all distances by color-
electric flux tubes formed from nonabelian gauge fields
of quantum chromodynamics. In a Euclidean spacetime
with d = 4, these tubes form fluctuating surfaces. In
string theory, the behavior of such surfaces is investigated
in an idealized form, considering them as infinitely thin
objects possessing initially only surface tension (Nambu-
Goto strings). But soon it was found that these surfaces
would be unstable against the formation of infinitely thin
protrusions, which do not possess any surface energy but a
large configurational entropy (plumber’s nightmare). This
instability would ruin quark confinement. To avoid this,
a curvature stiffness energy was added to the surface ten-
sion [23]. The resulting Euclidean stiff-string action was
equal to the energy (7). However, this did not seem to
lead to the desired stabilization since, in an infinite num-
ber of dimensions, there exists a finite persistence length
beyond which quark would no longer be confined. It re-
mained unclear whether this phenomenon would persist
down to d = 4. The present discussion gives rise to the
hope that the persistence length can become infinite af-
ter all. Since d = 4 in (7) corresponds to N = 2 in the
nonlinear σ-model (22), which possesses a smooth phase
with long-range correlations, the λ-fluctuations in the ac-
tion (9) may be violent enough to produce so many zeros in
λ(x) that 〈λ(x)〉 = 0 and the persistence length in infinite,
implying permanent quark confinement. But we also have
learned that this may occur only with support from higher
nonlinear terms in the curvature energy. A color-electric
flux tube certainly has such additional terms, although it
differs from the membranes discussed in this paper in an
important point: Its curvature stiffness is negative, as was
recently shown by the author and Chevyakov [24].

All papers by the author quoted in the list of
references can be read on the world wide web at
http://www.physik.fu-berlin.de/˜kleinert/kleiner re0.html.

The author is grateful to Prof. W. Helfrich and to Drs. C.
Diamantini, A. Pelster, and C. Trugenberger for many discus-
sions.
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